Ea /& ez

NASA Technical Memorandum 105 iﬁ?

Description of Real-Ti

Implementation of a Power System
Monitor for the Space Station
Freedom PMAD DC Testbed

Kimberly Ludwig

Sverdrup Technology, Inc.

Lewis Research Center Group

Brook Park, Ohio

Michael Mackin and Theodore anhi
National Aeronautics and Space Admmlstranon

Lewis Research Center =
Cleveland, Ohio T

Prepared for the
26th Intersociety Energy Conversxon Engmeermg Conference
cosponsored by the ANS, SAE, ACS, AIAA, ASME, IEEE, and AIChE

ot o coet o unclas
Ll un At LT

DESCRIPTION OF REAL-TIME ADA SOFTWARE IMPLEMENTATION OF A POWER
SysTEM MONITOR FOR THE SPACE STATION FREEDOM PMAD DC TESTBED

Kimberly Ludwig
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio 44142

Michael Mackin and Theodore Wright
National Aeronautics and Space Administration
Lewis Research Center
Clsveland, Ohio 44135

ABSTRACT

This paper describes the Ada language
software developed to perform the electrical power
system monitoring functions for the NASA Lewis
Research Center's Power Management and
Distribution (PMAD) DC testbed. The results of the
effort to implement this monitor will be presented.
The PMAD DC testbed is a reduced-scale
prototype of the electric power system to be used
in Space Station Freedom. The power is controlled
by smart switches known as power control
components (or switchgear). The power control
components are currently coordinated by five
Compaq 386/20e computers connected through an
802.4 local area network. One of these computers
is designated as the control node with the other
four acting as subsidiary controllers. The
subsidiary controllers are connected to the power
control components with a Mil-Std-1553 network.
An operator interface is supplied by adding a sixth
computer.

The power system monitor algorithm is
comprised of several functions including: periodic
data acquisition, data smoothing, system
performance analysis, and status reporting. Data is
collected from the switchgear sensors every 100
milliseconds, then passed through a 2 Hz digital
filter. System performance analysis includes power
interruption and overcurrent detection. The
reporting mechanism notifies an operator of any
abnormalities in the system. Once per second, the
system monitor provides data to the control node
for further processing, such as state estimation.

The system monitor required a hardware timer
interrupt to activate the data acquisition function.

The execution time of the code was optimized by
using an assembly language routine. The routine
allows direct vectoring of the processor to Ada
language procedures that perform periodic control
activities. A summary of the advantages and side
effects of this technique will be discussed

INTRODUCTION

The NASA Power Management and
Distribution testbed is designed to evaluate electric
power control hardware and software for use in
Space Station Freedom, as described in [1].
Presently, the testbed's power control components
are controlled by five Compaq 386/20e computers.
One computer is designated as the control node,
which coordinates each of the subsidiary controllers
and provides an interface to the operator. This
computer is called the Power Management
Controller, or PMC. There is a Photovoltaic
Controller (PVC), whose functions are to control
and monitor the Sequential Shunt Unit or Solar
Array Switching Unit, the DC Switching Unit, and
the Battery Charge/Discharge Units. The main
feeder lines, crossties, and DC-to-DC converter
units are controlled and monitored by the Main Bus
Controller (MBC). The last two subsidiary
controllers, the Secondary Power Controller (SPC)
and Tertiary Power Controller (TPC), are used to
communicate to the Remote Bus Isolators, Remote
Power Controllers, and the Load Converters. The
computers are connected to one another through
an 802.4 local area network. Each of the
subsidiary computers are connected to power
control components with a Mil-Std-1553 bus. The
single power channel configuration, shown from a
controls viewpoint, of the PMAD testbed hardware
is shown in Figure 1.

Page 1

Operator Inlerfaco

o
: (a3

PR

(MR FERITH

L]
Py MEC LR IRR =%
~ = [&3 - = [=
\
Mi St 154 4 l
F o D) O =0 9
C— = G - - O
Compmnert: __,C;) Cj) ——Q:) - (:-:)
[-
Figure 1 - PMAD Testbed Hardware.

In the next phase of the testbed, this basic TPCs. This controller is the Load Management
configuration is expanded to include a second Controller (LMC) whose function is to coordinate
power channel. The subsidiary controllers are the SPCs and TPCs on each channel. The
duplicated to handle the additional power sources configuration of the second phase of the testbed
and loads. An additional difference between the hardware is iflustrated in Figure 2.
two configurations is that an intermediate controller
is inserted between the PMC and the SPCs and

Upeeator lnbe {ace
AWM ek
|
8324 tetaot
[R21
«w %-
B A Metwuib
M St 1553
7y C‘) TP
NS =R
cwer — ""(:\ R
O— R
Comperants : ' (—’J Eg
™
..... T —
: (O—
MU OSTEIIIN ',\j {0
"
Figure 2 -Dual channel PMAD Testbed Hardware.

The Ada programming language was selected for the development of power system control

to provide a flexible and maintainable environment algorithms. The software design for the control

Page 2

computers uses an object oriented design
methodology and incorporates some of the
advanced features of the Ada language, including
tasking. The software is designed to be as generic
as possible, allowing it to be used on any of the five
control computers. Hardware dependent portions
of the design are encapsulated so that the software
can be easily adapted to new power system
hardware under development. As these new
hardware components are added to the PMAD
testbed, new component interfaces will be
incorporated into the software. Additionally, new
control algorithms will be added as they are
developed. Further details on the Ada software
design and capabilities can be found in [2].

SOFTWARE SYSTEM DESIGN

Since the testbed software is object based, a
software "object" is associated with every network,
power control component, and power control
algorithm in the testbed. In Ada, these objects are
represented as tasks. Some objects are comprised
of two tasks, an "actor” and a "listener” task. The
purpose of the listener task is to provide an
interface to other objects in the system. |t accepts
and processes commands from the other objects.
The listener task also has the capability to create,
stop, or abort its related actor task. The actor task
executes independently and performs any
computations that must be done continuously. An
example of this type of object is the
System_Monitor, described later. Other objects,
such as the power control components, have only
one task identified with them: a listener task. The
interface provided by the listener task is used to
request data from, or send commands to the
switchgear.

To facilitate communication between the
objects in the system, a messaging concept was
developed. The routeris an object that was
developed to pass messages. Whenever any
object wishes to talk to another object, it "sends a
message” to the other object by employing calls to
router functions. Additionally, the router provides
services to start new control algorithms and power
component tasks, assign an alias to an existing
task, and display a list of the tasks started on the
local processor.

Besides the router object, there are a few other
basic objects in the system. The Standard_In
object accepts keyboard input, while Standard_Out

displays information on the screen. Similarly the
Remote_In object accepts input from the serial
port, and Remote_Out sends output to the serial
port. The Text_Interface task formats data that is
to be shown on a monitor. There is a Network
object, whose purpose is to provide
communications over the 802.4 local area network.
All of these tasks are started when the testbed
software is invoked.

All power control component and algorithms
objects are created at run time. The operator will
either type in commands to start these tasks, or
read from a file to automatically start them.
Defined within every power control component
object is a procedure that must be executed in a
periodic manner in order for the power system
monitor algorithm to execute correctly. This
procedure is always named Sync_Proc. Since new
component objects can be started at any time, the
system monitor algorithm needs to be notified of
their existence before starting to process the
synchronous' operations.

POWER SysTEM MONITOR ALGORITHM DESCRIPTION

The power system monitor algorithm is the
process of periodic data collection, data smoothing,
performance analysis, and error reporting. A key
operation in this process is periodic sensor data
collection. The sampling period of the sensor data
is 100 milliseconds. After being acquired in a
binary format, the raw data must be converted to
decimal numbers. Then it is passed through a
digital low pass filter for smoothing. Currently, a 2
Hz third-order Butterworth filter is being used for
data filtering. The filtered data is then analyzed for
system abnormalities. The types of faults that are
detected consist of power interruption,
undervoltage, overcurrent, bus fault, and line fault.
A power interruption happens when there is an
insufficient amount of power being supplied to
loads. This situation can occur during severe
undervoltage conditions or when a path to a power
source is absent. A local power interruption occurs
when an individual load RPC is open. An upstream
interruption occurs when a bus is isolated due to an
upstream RPC being open. An overcurrent "soft"
fault comes about when the component's filtered
current reading is greater than the expected current

! The term synchronous is used synonymously for
periodic.

Page 3

value. A "hardware” overcurrent error occurs if the
filtered current reading is greater than the hardware
rating. When this situation arises the component is
commanded off and an appropriate error message
is sent to the operator. An undervoltage condition
happens when all of the voltages across a bus are
not within an acceptable tolerance of each other.
Bus and line faults are determined by applying
Kirchoff's Current Law. A fault transpires when the
sum of all the currents across a bus or line are not
within an acceptable tolerance. In the event that an
anomaly in the system is detected, the operator is
informed of the error. Additional information
regarding the control system design is presented in

(3.
IMPLEMENTATION OF SYSTEM MONITOR

The functions of the power system monitor
algorithm are distributed into several objects.
Controlling the activation of the periodic events is
the Synchronous_Manager object. The
Synchronous_Manager prompts the 1553_Manager
to read the sensor data. Additionally it causes
each Sync_Proc to execute. Each individual

component's Sync_Proc performs data conversion,
filtering, and evaluation of power component health.
The Saved_Data object acts as a repository for the
filtered data. The System_Monitor object checks
the components for anomalies, reporis any errors
detected to the PMC, performs bus and line fault
detection, and once per second prompts
Saved_Data to transmit the most recent snapshot
of data to the PMC.

To accomplish the synchronous data collection,
a timer was added to the control computers. An
expansion card, with an 8354 programmable timer
chip, was designed for the Compaq/386. The timer
generates an interrupt every 100 milliseconds, at
which time an Ada interrupt handler obtains control
of the processor. The interrupt handler is a
separate procedure of the Synchronous_Manager
object, who can install and remove the handler.
After receiving an interrupt, the handler activates a
sequence of procedures to perform the data
acquisition, filtering, error detection, and error
reporting. Figure 3 illustrates this process and its
interface to the rest of the testbed software.

Synchronization of Tasks

on the Compaq386 System Router

Object
Sync Procedure:

Read/convert component 1553 data

Perform digital filtering

Perform power Interrupt detection

hstener
task

Perform over current detection
Store filter history and filter data
Once a second store last snapshot data

JEPRRRT AR

> v
RPC G) | (RBI o
Object Object

LY

¢
7%
Synchronous ,:::"m)

Manager
Object
prepate
send proc) Sn;'p::!ol {interrupt handler)

oy A J

listener

\ 4
Save Data :';::“')

System task
Object sy Monitor
fast snapshot | Ob ie ot

filter data I

Hardware Interrupt
Interrupt Handler:
Set Port*
Prepare for snapshot
For each component,
call it's Sync Procedure
Clear Port*

* for timing /debugging

Prepare For Snapshot:
Increment snapshot &
Set save scan flag
Perlorm 1553 block read

purposes

System Monitor:
Reads component's fillered data from Saved_Data

Checks tor etrors, if any detected sends a message to

---p Asynchionous Messages
—® Synchionous piocedure calls

PMC and Operator informing them of lhe error
Every second send last snapshot to PMC to update Global database

Figure 3 - Control of tasks for System Monitoring.

Page 4

After the interrupt is received, the interrupt
handler executes the procedure
Prepare_for_Snapshot. This procedure reads the
1553 bus and obtains the sensor data from all
components connected to it. Next, the interrupt
handler calls the Sync_Proc procedure found in
every power component object. Each Sync_Proc
will get the raw data for its own particular
component and convert it into floating point
numbers. Next the Sync_Proc must retrieve the
component's filter history and then use the
Two_Hz_Filter procedure to smooth the data.

Then it performs power interruption and overcurrent
detection analysis. Once a second, it stores the
filtered data into the last snapshot data array to be
sent to the PMC. Before returning from the
procedure, the filter data and filter history are
stored for the next processing interval. After all of
the component object's periodic procedures have
been executed, the interrupt handler releases
control of the processor to allow other Ada tasks to
execute. When the interrupt handler releases
control of the processor, the System_Monitor is the
next task allowed to execute. The System_Monitor
checks for any errors that need to be immediately
reported to the PMC, and once per second sends
the last snapshot to the PMC so a global database
may be updated.

Assembly Routine for Procedure Activation

When executing the periodic activation of the
Sync_Procs, the Ada rendezvous must be avoided
because of the relatively long execution time
necessary to perform it. Therefore, an assembly
routine was written to bypass the Ada rendezvous.
This routine is used to provide vector control from

the interrupt handler to the periodic procedures.
The assembly code directly jumps to the memory
location of the Sync_Proc procedure, after setting
up some local data on the stack. One complication
in the assembly routine results from the component
object being created at run time. Since the
Sync_Proc code is defined as part of the code of
each component object, its memory location is not
known until run time. When a component's task is
initialized by the testbed operator, the address of its
Sync_Proc is stored in a table of active devices.
This table resides within the
Synchronous_Manager task and is accessed by
the timer interrupt handler when appropriate.

Use of the assembly routine does in fact
reduce execution time. A summary of the timing
results are presented in the following section.

Timing Results

From the preliminary tests performed, it
appears the implementation will be able to execute
the system monitor functions within the 100
millisecond time frame. Compared to previous
versions of the testbed software, execution times
have been reduced by roughly ninety percent. The
execution time of the assembly routine is 100
microseconds as opposed to the 3.5 milliseconds
required to perform the Ada rendezvous. The
overall execution time for performing the data
acquisition, filtering, and fault detection has been
reduced from 38 milliseconds to 4 milliseconds.
The majority of time savings is due to bypassing
the Ada rendezvous. In Figure 4, the different
periodic operation’'s timings are shown. The
vertical axis shows the periodic functions. The
harizontal axis shows time.

Compaq 386/20e Timings

100 ms

-
Hardware

interrupt !
Ada Interrupt
Handler

Synchronous

Manager 8 L L
1553 Bus Cl l

Read

Synch

Procedures | ofll i

Syst

M::ni’l:: Alg El J

monw)»

- Hardware Interrupt occurs every 100ms.

- Every 100 ms Syncronous Manager runs. Execulion time is aprox.3.5 ms

- The 1553 Bus read. Block read takes about 580 microseconds.

- Three hardware components’ Synchronous Procedure, each takes aprox.ims
- System Monilor Task runs in aprox. 6ms,

Figure 4 - Timings of the Synchronous Activities

Page 5

CONCLUSION

The real-time system monitoring operations
have been successfully implemented using Ada
and the assembly language routine as described in
this paper. By using the Ada language, a flexible
and maintainable software environment has been
provided. The timing constraints of the system
monitoring functions have been met by utilizing the
assembly language routine.

As the PMAD DC testbed is expanded to
include the second power channel, the control
software is being upgraded to incorporate objects
to control these new components. Additionally,
new control algorithms are being developed and
incorporated into the system as they become
available. These additions should have little effect
on the design and performance of the
System_Monitor.

ACKNOWLEDGEMENTS

The advanced development software team
consists of Dave Gantose, Kim Ludwig, Mike
Mackin, Jim Withrow, and Ted Wright. Tony Baez
and Greg Kimnach produced the functional design
of the system monitor and control operations.

REFERENCES

[1] J. Soeder, R. Frye, and R.Phillips, "The
Development of Testbeds to Support the Definition
and Evolution of the Space Station Freedom Power
System,"” IECEC-91 Proceedings,August, 1991.

[2] T. Wright, M. Mackin, and D. Gantose,
"Development of Ada Language Control Software
for the NASA Power Management and Distribution
Testbed,” IECEC-89 Proceedings, August, 1989.

[3] A. Baez and G. Kimnach, "Description of the
Control System Design for the Space Station
Freedom PMAD DC Testbed,” IECEC-91
Proceedings, August, 1991.

Page 6

NNSN Report Documentation Page

National Aeronautics and
Space Administration

. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA TM -105157
. Title and Subtitle 5. Report Date

Description of Real-Time Ada Software Implementation of a Power System
Monitor for the Space Station Freedom PMAD DC Testbed

6. Performing Organization Code

. Author(s) 8. Performing Organization Report No.
Kimberly Ludwig, Michael Mackin, and Theodore Wright E-6444
10. Work Unit No.
474-42-10

. Performing Organization Name and Address

National Aeronautics and Space Administration 1. Contract or Grant No.

Lewis Research Center
Cleveland, Ohio 44135-3191

13. Type of Report and Period Covered

12.

Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 14. Sponsoring Agency Code

15.

Supplementary Notes

Prepared for the 26th Intersociety Energy Conversion Engincering Conference cosponsored by ANS, SAE, ACS, AIAA,
ASME, IEEE, and AIChE, Boston, Massachusetts, August 4-9, 1991. Kimberly Ludwig, Sverdrup Technology, Inc.,
Lewis Research Center Group, 2001 Aerospace Parkway, Brook Park, Ohio 44142; Michael Mackin and Theodore
Wright, NASA Lewis Research Center. Responsible person, Kimberly Ludwig, (216) 433 - 6251.

16.

Abstract

This paper describes the Ada language software developed to perform the electrical power system monitoring functions
for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the
effort to implement this monitor will be presented. The PMAD DC testbed is a reduced-scale prototype of the electrical
power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control
components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e comput-
ers connected through an 802.4 local area network. One of these computers is designated as the control node with the
other four acting as subsidiary controllers. The subsidiary controllers are connected to the power control components
with a Mil-Std-1553 network. An operator interface is supplied by adding a sixth computer. The power system monitor
algorithm is comprised of several functions including: periodic data acquisition, data smoothing, system performance
analysis, and status reporting. Data is collected from the switchgear sensors every 100 milliseconds, then passed through
a 2 Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The reporting
mechanism notifies an operator of any abnormalities in the system. Once per second, the system monitor provides data to
the control node for further processing, such as state estimation. The system monitor required a hardware timer interrupt
to activate the data acquisition function. The execution time of the code was optimized by using an assembly language
routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control
activities. A summary of the advantages and side effects of this technique will be discussed.

17.

Key Words (Suggested by Author(s)) 18. Distribution Statement
ADA (programming language) Unclassified - Unlimited
Control Subject Category 62

Distributed processing

18.

Security Classif. (of the report) 20. Security Classif. (ot this page) 21. No. of pages 22. Price*
Unclassified Unclassified 8 A02

NASA FORM 1628 OCT 86

*For sale by the National Technical Information Service, Springfield, Virginia 22161

a7 wememouus s PRECEDING PAGE BLANK NOT FILMED

-

